0 CpxTRS
↳1 DecreasingLoopProof (⇔, 94 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 SlicingProof (LOWER BOUND(ID), 0 ms)
↳6 CpxRelTRS
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 typed CpxTrs
↳9 OrderProof (LOWER BOUND(ID), 0 ms)
↳10 typed CpxTrs
↳11 RewriteLemmaProof (LOWER BOUND(ID), 354 ms)
↳12 BEST
↳13 typed CpxTrs
↳14 RewriteLemmaProof (LOWER BOUND(ID), 94 ms)
↳15 BEST
↳16 typed CpxTrs
↳17 RewriteLemmaProof (LOWER BOUND(ID), 59 ms)
↳18 BEST
↳19 typed CpxTrs
↳20 LowerBoundsProof (⇔, 0 ms)
↳21 BOUNDS(n^1, INF)
↳22 typed CpxTrs
↳23 LowerBoundsProof (⇔, 0 ms)
↳24 BOUNDS(n^1, INF)
↳25 typed CpxTrs
↳26 LowerBoundsProof (⇔, 0 ms)
↳27 BOUNDS(n^1, INF)
↳28 typed CpxTrs
↳29 LowerBoundsProof (⇔, 0 ms)
↳30 BOUNDS(n^1, INF)
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
g(f(x)) → f(h(x))
h(x) → g(x)
They will be analysed ascendingly in the following order:
g = h
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
h, g
They will be analysed ascendingly in the following order:
g = h
Induction Base:
h(gen_f2_0(0))
Induction Step:
h(gen_f2_0(+(n4_0, 1))) →RΩ(1)
g(gen_f2_0(+(n4_0, 1))) →RΩ(1)
f(h(gen_f2_0(n4_0))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
g = h
Induction Base:
g(gen_f2_0(+(1, 0)))
Induction Step:
g(gen_f2_0(+(1, +(n112_0, 1)))) →RΩ(1)
f(h(gen_f2_0(+(1, n112_0)))) →RΩ(1)
f(g(gen_f2_0(+(1, n112_0)))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
h
They will be analysed ascendingly in the following order:
g = h
Induction Base:
h(gen_f2_0(0))
Induction Step:
h(gen_f2_0(+(n335_0, 1))) →RΩ(1)
g(gen_f2_0(+(n335_0, 1))) →RΩ(1)
f(h(gen_f2_0(n335_0))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n335_0)) → *3_0, rt ∈ Ω(n3350)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n335_0)) → *3_0, rt ∈ Ω(n3350)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.